Basic Rules for Algebra

I. Quadratic Equation:

The standard formula: \(ax^2 + bx + c = 0 \) (a, b, c are known values, \(a \neq 0 \); x is unknown variable)

Example: \(x^2 + 5x + 6 \) is a quadratic equation. \(a=1, b=5, c=6 \)

\(3x^2 + 5x \) is a quadratic equation; \(a=3, b=5, c=0 \)

\(5x + 7 \) is NOT a quadratic equation because \(a=0 \) (there is no \(x^2 \))

To solve quadratic equations:

1. Quadratic formula: \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)

Example: \(x^2 - 5x + 6 = 0 \). \(a=1, b=-5, c=6 \)

\(x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4*1*6}}{2*1} \) so \(x=-2 \) or \(x=-3 \)

2. Factoring by grouping or Diamond Method

Find 2 numbers that have the Sum of \(b \) and the Product of \(a \) times \(c \). After you get the two numbers, you will get the factors \((x + \text{constant 1})*(x + \text{constant 2})\)

Example: \(x^2 - 5x + 6 = 0 \)

So we need to find 2 constants that have the sum of -5 and product of 6

\[
\begin{array}{c|c|c|c|c}
\text{Sum} & b=-5 & -2 & -3 & \text{Product} \\
\hline
\text{Product} & a^2c = 1*6 = 6 & \hline
\end{array}
\]

\(x^2 - 5x + 6 = 0 \)

\((x + (-2))*(x + (-3)) = 0 \)

\((x - 2)(x - 3) = 0 \)

\(x - 2 = 0 \) or \(x - 3 = 0 \)

\(x = 2 \) or \(x = 3 \)
Basic Rules for Algebra

II. Special Factors

Difference of Two Squares
\[x^2 - y^2 = (x - y)(x + y) \]
Example: \[x^2 - 9 = (x - 3)(x + 3) \]

Difference of Two Cubes
\[x^3 - y^3 = (x - y)(x^2 + xy + y^2) \]
Example: \[x^3 - 8 = (x - 2)(x^2 + 2x + 4) \]

Sum of Two Cubes
\[x^3 + y^3 = (x + y)(x^2 - xy + y^2) \]
Example: \[x^3 + 8 = (x + 2)(x^2 - 2x + 4) \]

III. Binomial Theorem

Definition: a quick way of expanding a binomial that is raised to any positive integer power

\[(x + y)^2 = x^2 + 2xy + y^2 \]
Example: \[(x + 2)^2 = x^2 + 2(x)(2) + 2^2 = x^2 + 4x + 4 \]

\[(x - y)^2 = x^2 - 2xy + y^2 \]
Example: \[(x - 2)^2 = x^2 - 2(x)(2) + 2^2 = x^2 - 4x + 4 \]

\[(x + y)^3 = x^3 + y^3 + 3xy^2 + 3x^2y \]
\[+ 27x + 9x^2 \]
Example: \[(x + 3)^3 = x^3 + 3^3 + 3(x)(3)^2 + 3(x)^23 = x^3 + 27x + 27x + 9x^2 \]

\[(x - y)^3 = x^3 - y^3 + 3xy^2 - 3x^2y \]
\[+ 27x - 9x^2 \]
Example: \[(x - 3)^3 = x^3 - 3^3 + 3(x)(3)^2 - 3(x)^23 = x^3 - 27x + 27x - 9x^2 \]

IV. Logarithmic Rules

Definition: Logarithms are the opposite of exponentials. With \(a > 0 \) and \(a \neq 1 \)

\[\log_a x = y \] is equivalent to \[x = a^y \]

Example: \[\log_2 3 = x \rightarrow x = 2^3 = 8 \]
Example: \[10^3 = 1000 \rightarrow \log_{10} 1000 = 3 \]

Common Logarithm:
\[\log x = \log_{10} x \]

Natural Logarithm:
\[\ln x = \log_e x \]
Basic Rules for Algebra

Properties of Logs

\[\log_a 1 = 0 \]
Example: \(\log_7 1 = 0 \) (because \(7^0 = 1 \))

\[\log_a a = 1 \]
Example: \(\log_5 5 = 1 \) (because \(5^1 = 5 \))

\[\log_a a^x = x \]
Example: \(\log_5 5^8 = 8 \) (because \(5^8 = 5^8 \))

\[a^{\log_a x} = x \]
Example: \(5^{\log_5 12} = 12 \)

Laws of Logarithms

\[\log_a (AB) = \log_a A + \log_a B \]
Example: \(\log_2 (6x) = \log_2 6 + \log_2 x \)
 Example: \(\log_4 2 + \log_4 32 = \log_4 (2\cdot32) = \log_4 64 = 3 \)

\[\log_a (A/B) = \log_a A - \log_a B \]
Example: \(\log_5 (x/3) = \log_5 x - \log_5 3 \)
 Example: \(\log_2 80 - \log_2 5 = \log_2 (80/5) = \log_2 16 = 4 \)

\[\log_a A^c = c \log_a A \]
Example: \(\log_3 x^2 = 2 \log_3 x \)
 Example: \(3 \log_4 x = \log_4 x^3 \)

References - The following works were referred to during the creation of this handout: Valle Verde Tutorial Support Service Handout.